Ultra-thin veneers in clinical practice

Aesthetic dental restorations with lithium disilicate materials

With the advent of new materials such as lithium disilicate, the fabrication of very thin veneers that require only minimal removal of natural tooth structure has become a clinical reality. The IPS e.max all-ceramic system from Ivoclar Vivadent, for example, covers all current all-ceramic indications and is suitable for use with the CAD/CAM and press techniques.

The IPS e.max Press product range comprises ingots in four levels of translucency (HT, LT, MO and HO) and Impulse ingots in three different values (Value 1, 2 and 3) and twoopal shades (Optal 1 and 2). These materials are particularly useful for fabricating single-tooth restorations in cases of damaged or stained dental enamel, as described in detail in the following case report.

A 39-year-old female patient consulted our clinic to improve the appearance of her anterior teeth (Figs. 1 & 2). Apart from slight periodontal problems, which were confirmed by a radiographic examination, we diagnosed proximal caries in the first incisors, as well as Class III dental and skeletal malocclusion with an open bite (Fig. 2). Moreover, we found peri-apical infections around teeth 31 and 32.

Based on these findings, a two-stage treatment plan was developed to eliminate caries and the infection by periodontal curettage and planing of root surfaces to control the underlying disease. The malocclusion was corrected with orthodontic treatment. The second stage of the plan focused on aesthetics and started with a clinical, radiological and photographic analysis (Figs. 3 & 4). An impression was taken and the maxillary and mandibular relationship was recorded by means of an arbitrary facebow. The gingival margin was adjusted with the help of connective-tissue transplants and the mandibular arch was bleached. Finally, ultra-thin veneers (< 0.5 mm) made with IPS e.max Press Impulse Opal 2 were placed.

After the teeth had been thoroughly analysed, a wax-up was fabricated, which was subsequently used to create a mock-up. A 2 mm-thick perforated tray (Fig. 5) and two silicone matrices were produced to check the vertical dimension of occlusion during preparation (Fig. 6) and to fabricate the chairside temporary. A retraction cord was placed along the gingival margin to protect the gingiva during the preparation procedure.

A depth marker was used to ensure proper reduction of the vestibular tooth surface. This bur cut orientation grooves with a depth of 0.3 mm. The incisal edge was reduced with a diamond bur (0.6 mm), which was also used to remove the ridges between the grooves and completely level out the surface. The proximal and gingival areas were prepared with the same bur. The marginal and proximal areas were prepared and then polished. The entire preparation surface was completely smoothed with a polishing disc and a medium-grit polishing paste to eliminate all grooves and edges. The silicone matrix was then inserted to check the correct dimensions of the prepared teeth (Fig. 7). In a final step, the retraction cord was removed.

Using the double-cord retraction technique, the first retraction cord (size 000) was placed along the keratinized gingiva and then the adjacent teeth were cleaned. Each veneer was tried in and cemented in place. First, the temporary restorations were removed and the prepared teeth were cleaned. Each veneer was tried in individually to ensure correct fit. Next, the proximal fit was checked by positioning one veneer correctly and then placing the adjacent veneer. The position of the first veneer was examined very closely after the adjacent veneer had been placed to determine and correct any changes.
In addition to its elegant and stylish design, its ease-of-use, its high image resolution and its reliability, the I-Max Touch 3D offers the ideal field of view (FOV) for use in dental imaging. With SimPlant® software pre-loaded, the I-Max Touch 3D is a MUST-HAVE for your implant planning procedure.
The veneers were placed with Variolink Veneer (Ivoclar Vivadent) after selecting the shade of the adhesive. Variolink Try-In pastes (Ivoclar Vivadent) were used because they help simulate the final shade of the adhesive. Variolink Try-In pastes were used for 20 seconds and then removed with a water jet.

The ceramic surface, which has to be kept free from contamination, was treated with 5 per cent hydrofluoric acid (IPS Ceramic Etching Gel, Ivoclar Vivadent) for 20 seconds. The restorations were cleaned with a water jet and immersed in an ultrasonic bath for 5 minutes. The veneers were then dried and conditioned with the silane coupling agent Monobond Plus (Ivoclar Vivadent) for 60 seconds. The excess was dispersed with a strong stream of air. The prepared teeth were then cleaned with brushes and fluoride-free prophylactic pastes. The enamel was etched with the 37 per cent orthophosphoric acid Total Etch (Ivoclar Vivadent) for 60 seconds and then cleaned with a water jet and uncontaminated oil-free air.

Shortly before the veneers were placed, Excite/hard (Ivoclar Vivadent) was applied thickly to enamel and dentine, and carefully scrubbed in for at least 10 seconds. The excess was dispersed to a thin layer with a weak stream of air.

In the process, it is very important to avoid pooling. A shiny surface showed that the tooth was completely sealed. The adhesive was cured for 10 seconds with a light intensity of above 500 mW/cm² and Variolink Veneer was applied directly to the preparation.

In the final luting phase, the veneers were placed on the prepared teeth with consistent pressure and then polymerised for 2 seconds (Fig. 13). As the luting material had not yet completely cured, it was easy to remove the excess with a probe. The margins were previously isolated with Liquid Strip glycerine gel (Ivoclar Vivadent), which prevents the formation of an oxygen-inhibited layer during polymerisation and enables the luting material to cure properly. Finally, the restorations were cured for 90 seconds from all sides.

The excess was removed with a scalpel. Fine-grit burs and silicone polishers were used at the palatal margin. The rubber dam was then removed and the occlusion inspected (Fig. 14). After the treatment, the patient received instructions on maintaining her restorations and she was scheduled for a recall examination one month later (Figs. 15 & 16).

Conclusion
The topic of aesthetics continues to grow in importance in dentistry and the development of innovative materials such as IPS e.max Press Impulse allows dental professionals to use new techniques for non-invasive preparation of teeth. In addition, such materials provide aesthetic benefits and eliminate the necessity for dentists to use new layering techniques.

Specialist knowledge of the adhesive cementation of lithium disilicate restorations gives dentists the professional edge needed to address the challenges associated with this type of treatment. The treatment protocol is firmly established today. It is of utmost importance for dentists and dental technicians to perform their work with great precision. In order to jointly have a positive impact on the results, both parties must be familiar with the entire procedure. Teamwork and a meticulous approach during the individual treatment phases are required to achieve aesthetic outcomes.

Acknowledgement
I would like to thank Roberto Portas Moure for the excellent dental laboratory work, and the patience of the patient for her confidence and patience during the treatment.

Editorial note: A list of references is available from the publisher.